
C++ PROGRAMMING - REGIONAL 2017

ANSWER KEY

Page 1 of 10

Judge/Graders: Please double check and verify all

scores and answer keys!

Property of Business Professionals of America.

May be reproduced only for use in the Business Professionals of America

Workplace Skills Assessment Program competition.

C++ Programming
(335)

REGIONAL – 2017

Production Portion:

Natural Language Processing: Named Entities ______________ (350 points)

 TOTAL POINTS ______________ (350 points)

C++ PROGRAMMING - REGIONAL 2017

ANSWER KEY

Page 2 of 10

Natural Language Processing: Named Entities

Have you chatted with Apple Siri, Google Now, Amazon Alexa or Microsoft Cortana? These

amazing intelligent assistants employ Natural Language Processing (NLP). This is a leading edge field

of computer science and artificial intelligence, concerned with the interactions between computers and

human languages. Programmers like you are enabling computers to derive meaning from human or

natural language input, as well as generate human language. For this exercise, you will use computer

language (C++) to process human language!

1. Write a program that reads written natural language from provided file “human_jabber.txt”.

Your program will identify paragraphs, sentences and words. Words are separated by spaces,

sentences by periods, and paragraphs are delimited by newlines (“\n”). Hint: most punctuation

except periods can be discarded.

2. Your program will also read “named_entities.txt”. This is a list of proper nouns which are often

just capitalized words. Use it to identify named entities.

3. Your program will save to “output.csv” what was parsed (example below for format).

4. The program will output a total count to the screen of named entities, words, sentences and

paragraphs (example below).

5. If the same word or named entity occurs again in the input, count it again. A name like “Paul

Bunyan” counts as two named entities.

6. Congratulations! You’ve processed text in a way that a program like Siri can begin to interpret.

Steps

1. Build a reusable “readFile” function (to read input files), a “parser” function (to identify

paragraphs, sentences, words and named entities) and a “writeFile” function to write the output

file. Output totals to screen. The program should gracefully handles improper or missing input

files, as well as ignore extra whitespace, punctuation and symbols.

2. The program will read files “human_jabber.txt” and “named_entities.txt” and output formatted

csv, generated from the data structure.

C++ PROGRAMMING - REGIONAL 2017

ANSWER KEY

Page 3 of 10

Sample Input and Output:

1. Here is an example input file human_jabber.txt:
I am from Minnesota. Paul Bunyan lives here.

Florida is warmer. I might move.

Prince was from here so it's cool.

2. The file named_entities.txt contains:
Minnesota

Paul

Bunyan

Prince

Florida

3. Example output.csv shown. The output contains csv columns for word #, paragraph #,

sentence #, type (word or namedEntity), and parsed word.
paragraph, sentence, type, word
w1, p1, s1, word, I

w2, p1, s1, word, am
w3, p1, s1, word, from

w4, p1, s1, namedEntity, Minnesota
w5, p1, s2, namedEntity, Paul
w6, p1, s2, namedEntity, Bunyan

w7, p1, s2, word, lives
w8, p1, s2, word, here

w9, p2, s3, namedEntity, Florida
w10, p2, s3, word, is
w11, p2, s3, word, warmer

w12, p2, s4, word, I
w13, p2, s4, word, might

w14, p2, s4, word, move
w15, p3, s5, namedEntity, Prince
w16, p3, s5, word, was

w17, p3, s5, word, from
w18, p3, s5, word, here

w19, p3, s5, word, so
w20, p3, s5, word, it's
w21, p3, s5, word, cool

4. The program will output this summary to the screen:
Words: 21
Named Entities: 5

Sentences: 5
Paragraphs: 3

5. You will have 90 minutes to complete your work.

6. Your name or school name should NOT appear on any work you submit for grading.

C++ PROGRAMMING - REGIONAL 2017

ANSWER KEY

Page 4 of 10

Development Standards

● Consistent naming should be used for variables and code.

● Classes, methods, and functions must be documented with comments explaining the purpose, the

input parameters (if any), and the output (if any).

Your application will be graded on the following criteria:

 Solution and Project

 Custom code is present ____ 10 points

 All classes and methods/functions are customized ____ 10 points

Program Execution

Program runs ____ 20 points

If program does not execute, then remaining items receive partial credit if credible code exists.

The program gracefully handles empty, improper or missing input files ____ 10 points

The program reads “human_jabber.txt” into a data structure ____ 15 points

The program reads “named_entities.txt” into a data structure ____ 15 points

The program saves “output.csv” containing dynamically generated csv ____ 15 points

The program outputs correct totals at end ____ 30 points

The “output.csv” correctly counts Words, Paragraphs and Sentences ____ 15 points

The “output.csv” has correct Words identified ____ 15 points

The “output.csv” has Named Entities correctly identified ____ 15 points

The program ignores input “,” and parenthesis and doesn’t add to csv ____ 10 points

The program correctly handles paragraph, sentence and word delimiters ____ 10 points

The program correctly handles (ignores) extra white space ____ 10 points

Source Code Review

Class code is commented, for each method, and as needed ____ 15 points

Code uses reasonable and consistent variable naming conventions ____ 15 points

The program contains well-formed function for readFile ____ 25 points

The program contains well-formed function for parser ____ 25 points

The program contains well-formed function for writeFile ____ 25 points

Processing exists for counting and displaying totals ____ 15 points

The program has punctuation processing ____ 10 points

The program has whitespace processing ____ 10 points

Code exists to trap for file errors ____ 10 points

 Total Points: _____ / 350 points

C++ PROGRAMMING - REGIONAL 2017

ANSWER KEY

Page 5 of 10

Solution Key Input and Output

Input File human_jabber.txt:

Apollo was the spaceflight that landed the first humans on the Moon,

Americans Neil Armstrong and Buzz Aldrin, on July 20, 1969. Armstrong

became the first to step onto the lunar surface six hours later.

Armstrong spent about two and a half hours outside the spacecraft.

Aldrin spent slightly less. Together they collected 47 pounds (21 kg)

of lunar material for return to Earth.

The third member of the mission, Michael Collins, piloted the command

spacecraft alone in lunar orbit until Armstrong and Aldrin returned to

it just under a day later for the trip back to Earth.

Input File named_entities.txt:

Maxwell

Apollo

Neil

Armstrong

Buzz

Aldrin

Michael

Collins

Americans

Moon

Earth

July

Pacific

Toaster

C++ PROGRAMMING - REGIONAL 2017

ANSWER KEY

Page 6 of 10

Solution Output to stdout:

Words: 98

Named Entities: 18

Sentences: 6

Paragraphs: 3

Solution Output File output.csv (spot check their file for correct named entities)

w1, p1, s1, namedEntity, Apollo

w2, p1, s1, word, was
w3, p1, s1, word, the
w4, p1, s1, word, spaceflight

w5, p1, s1, word, that
w6, p1, s1, word, landed

w7, p1, s1, word, the
w8, p1, s1, word, first
w9, p1, s1, word, humans

w10, p1, s1, word, on
w11, p1, s1, word, the

w12, p1, s1, namedEntity, Moon
w13, p1, s1, namedEntity, Americans
w14, p1, s1, namedEntity, Neil

w15, p1, s1, namedEntity, Armstrong
w16, p1, s1, word, and

w17, p1, s1, namedEntity, Buzz
w18, p1, s1, namedEntity, Aldrin
w19, p1, s1, word, on

w20, p1, s1, namedEntity, July
w21, p1, s1, word, 20

w22, p1, s1, word, 1969
w23, p1, s2, namedEntity, Armstrong
w24, p1, s2, word, became

w25, p1, s2, word, the
w26, p1, s2, word, first

w27, p1, s2, word, to
w28, p1, s2, word, step
w29, p1, s2, word, onto

w30, p1, s2, word, the
w31, p1, s2, word, lunar

w32, p1, s2, word, surface
w33, p1, s2, word, six
w34, p1, s2, word, hours

w35, p1, s2, word, later
w36, p2, s3, namedEntity, Armstrong

w37, p2, s3, word, spent
w38, p2, s3, word, about
w39, p2, s3, word, two

w40, p2, s3, word, and
w41, p2, s3, word, a

w42, p2, s3, word, half
w43, p2, s3, word, hours
w44, p2, s3, word, outside

w45, p2, s3, word, the
w46, p2, s3, word, spacecraft

w47, p2, s4, namedEntity, Aldrin
w48, p2, s4, word, spent
w49, p2, s4, word, slightly

w50, p2, s4, word, less

C++ PROGRAMMING - REGIONAL 2017

ANSWER KEY

Page 7 of 10

w51, p2, s5, word, Together

w52, p2, s5, word, they
w53, p2, s5, word, collected

w54, p2, s5, word, 47
w55, p2, s5, word, pounds
w56, p2, s5, word, 21

w57, p2, s5, word, kg
w58, p2, s5, word, of

w59, p2, s5, word, lunar
w60, p2, s5, word, material
w61, p2, s5, word, for

w62, p2, s5, word, return
w63, p2, s5, word, to

w64, p2, s5, namedEntity, Earth
w65, p3, s6, word, The
w66, p3, s6, word, third

w67, p3, s6, word, member
w68, p3, s6, word, of

w69, p3, s6, word, the
w70, p3, s6, word, mission
w71, p3, s6, namedEntity, Michael

w72, p3, s6, namedEntity, Collins
w73, p3, s6, word, piloted

w74, p3, s6, word, the
w75, p3, s6, word, command
w76, p3, s6, word, spacecraft

w77, p3, s6, word, alone
w78, p3, s6, word, in

w79, p3, s6, word, lunar
w80, p3, s6, word, orbit
w81, p3, s6, word, until

w82, p3, s6, namedEntity, Armstrong
w83, p3, s6, word, and

w84, p3, s6, namedEntity, Aldrin
w85, p3, s6, word, returned
w86, p3, s6, word, to

w87, p3, s6, word, it
w88, p3, s6, word, just

w89, p3, s6, word, under
w90, p3, s6, word, a
w91, p3, s6, word, day

w92, p3, s6, word, later
w93, p3, s6, word, for

w94, p3, s6, word, the
w95, p3, s6, word, trip
w96, p3, s6, word, back

w97, p3, s6, word, to
w98, p3, s6, namedEntity, Earth

C++ PROGRAMMING - REGIONAL 2017

ANSWER KEY

Page 8 of 10

Solution Source Code

// Program to perform Natural Language Processing

// Reads file “human_jabber.txt” and identifies

// paragraphs, sentences, words and named entities.

// It uses "named_entities.txt" to identify proper nouns (often capitalized).

// Program outputs parsed words and their identifcation as csv file

// with count at end.

#include <iostream>

#include <fstream>

#include <iomanip>

#include <sstream>

#include <cctype>

#include <string>

class readFile;

class parser;

class writeFile;

// Reusable class to read file and store in buffer.

// Constructor accepts filename.

// Has getter methods to return buffer and size.

class readFile {

 public:

 readFile(std::string);

 std::stringstream& getBuffer();

 int getBufferSize();

 private:

 std::stringstream buffer;

};

// Constructor

readFile::readFile(std::string fileName) {

 std::ifstream file(fileName);

 if (file)

 {

 buffer << file.rdbuf();

 file.close();

 // operations on the buffer...

 } else {

 std::cout << "File does not exist.";

 }

};

// Get Buffer

std::stringstream& readFile::getBuffer() {

 return buffer;

};

// Get Buffer Size

int readFile::getBufferSize() {

 return buffer.str().size();

};

// This is a parser class to identify

// paragraphs, sentences, words and named entities.

// Constructor accepts input and named entity buffers.

// Has getter methods for parsed output and its size.

class parser {

 public:

 parser(std::stringstream&, std::stringstream&);

 std::stringstream& getOutput();

C++ PROGRAMMING - REGIONAL 2017

ANSWER KEY

Page 9 of 10

 int getOutputSize();

 private:

 std::stringstream *output;

};

// Constructor

parser::parser(std::stringstream& in, std::stringstream& namedEntities) {

 std::string word, type;

 std::size_t sentences = 0;

 std::size_t paragraphs = 0;

 std::size_t words = 0;

 std::size_t nes = 0;

 bool in_sentence = false;

 bool in_paragraph = false;

 char token;

 output = new std::stringstream("paragraph, sentence, type, word\n", std::ios_base::app |

std::ios_base::out);

 // Step through each letter

 while (in.get(token))

 {

 if (std::isspace(token) || token == '.')

 { // whitespace

 // new paragraph

 if (token == '\n')

 in_paragraph = false;

 // new word

 if (word != "") {

 type = "word";

 ++words;

 if ((namedEntities.str().find("\n"+word+"\n") != std::string::npos) ||

 (namedEntities.str().find("\n"+word+" ") != std::string::npos)) {

 type = "namedEntity";

 ++nes;

 }

 *output << "w" << words << ", p" << paragraphs << ", s" << sentences << ", "

<< type << ", " << word << "\n";

 }

 // new sentence

 if (token == '.') {

 in_sentence = false;

 }

 word = "";

 }

 else

 { // non-whitespace and alpha numeric

 if (isalnum(token) == 1) {

 word += token;

 if (!in_paragraph)

 {

 in_paragraph = true;

 ++paragraphs;

 }

 if (!in_sentence) {

 in_sentence = true;

 ++sentences;

 }

 }

C++ PROGRAMMING - REGIONAL 2017

ANSWER KEY

Page 10 of 10

 }

 }

 // Display final counts / summary

 std::cout << "\nWords: " << words << "\nNamed Entities: " << nes

 << "\nSentences: " << sentences << "\nParagraphs: " << paragraphs << "\n";

};

// get parsed results

std::stringstream& parser::getOutput() {

 return *output;

};

// get results size

int parser::getOutputSize() {

 return (*output).str().size();

};

// Reusable class to write file.

// Constructor accepts buffer and filename

class writeFile {

 public:

 writeFile(std::stringstream&, std::string);

};

writeFile::writeFile(std::stringstream& output, std::string fileName) {

 std::ofstream file(fileName);

 if (file.is_open())

 {

 file << output.str();

 file.close();

 // operations on the buffer...

 } else {

 std::cout << "Unaable to write file.";

 }

};

// Main

// Reads file “human_jabber.txt” and identifies paragraphs, sentences and words.

// Saves output

int main()

{

 readFile inputFile("human_jabber.txt");

 readFile namedEntities("named_entities.txt");

 if (inputFile.getBufferSize()) {

 parser parsedInput(inputFile.getBuffer(), namedEntities.getBuffer());

 if (parsedInput.getOutputSize() > 0) {

 writeFile outputFile(parsedInput.getOutput(), "output.csv");

 }

 }

}

