 8 Pages	Contestant Number____________
	Time____________
	 	Rank____________

JAVA PROGRAMMING – REGIONAL 2016	
ANSWER KEY
Page 2 of 8
	

JAVA PROGRAMMING
(340)

REGIONAL – 2016

Production Portion:

Program 1: Base K Addition		 (335 points)
	
	TOTAL POINTS		 (335 points)

Judge/Graders: Please double check and verify all scores and answer keys!

Property of Business Professionals of America.
May be reproduced only for use in the Business Professionals of America
Workplace Skills Assessment Program competition.

You will have 90 minutes to complete your work.

[bookmark: _GoBack]Your name and/or school name should NOT appear on any work you submit for grading.

Create a folder on the flash drive provided using your contestant number as the name of the folder. Copy your entire solution/project into this folder. You must submit your entire solution/project so that the graders may open your project to review the source code. You must ensure that the files required to run your program are present and will execute on the flash drive provided. Note that the flash drive letter may not be the same when the program is graded as it was when you created the program. It is recommended that you use relative paths rather than absolute paths to ensure that the program will run regardless of the flash drive letter. The graders will not compile or alter your source code to correct for this. Submissions that do not contain source code will not be graded.

Assumptions to make when taking this assessment:

· The input file(s) will contain only ASCII characters.
· A test input file will be available and will be named, “basekaddition.txt”.
Development Standards:

· Standard name prefixes must be utilized for variables.
· All subroutines, functions, and methods must be documented with comments explaining the purpose of the method, the input parameters (if any), and the output (if any). If you create a class, then you must use Javadoc comments.

Your application will be graded on the following criteria:

Solution and Project

The project is present on the flash drive					____ 10 points
The project main class is named baseKaddition				____ 10 points

Program Execution

The program runs from the USB flash drive					____ 15 points

If the program does not execute, then the remaining items in this section receive a score of zero.

The program runs and reads the input file 				 	____ 20 points
The program displays an error message if the command line is empty	____ 20 points
The program displays an error message if the file cannot be found		____ 20 points
The program displays the base of the numbers				____ 20 points
The program displays the first number to add				____ 20 points
The program displays the second number to add				____ 20 points
The program displays the correct addition of the numbers			____ 30 points
The program displays all the output for all of the numbers in the file	____ 40 points

Source Code Review

The source code is properly commented
	A comment containing the contestant number is present		____ 10 points
	Methods and code sections are commented				____ 20 points
A method exists to perform the display of output				____ 20 points
A method exists to perform the addition					____ 20 points
Code uses try…catch for file exception					____ 20 points
Code uses a consistent variable naming convention 				____ 10 points
Methods are used appropriately						____ 10 points

Total Points: 335 points

Base K Addition

The simple idea is that the program will be able to perform addition, in decimal, binary, octal, hexadecimal (base 16), or any other base that it is given.

In this problem, you will be given two numbers in base K and asked to add them.

Input:

The input to this problem consists of a text file. The first line of the text file contains a single decimal integer that indicates the number of times the program should perform the addition. The next three lines will repeat for the number indicated in the first line.

The first line of these three numbers contains a single decimal integer indicating the base in which the arithmetic is to be done. This integer will be between 2 and 20 inclusive. The second and third lines of text each consists of a single non-negative number in that base.

In keeping with mathematical tradition, numerals 10-19 (if needed) will be indicated by the letters A-J respectively – upper case only. The sum of the numbers represented in the second and third lines will be smaller than the decimal value 2,014,003,021.

Output:

The output consists of four lines of text. The first line describes the base of the numbers. The second line shows the first number. The third line shows the second number. The fourth line shows the result of the addition.

Example:
The base of the numbers to add is 10
The first number is 173
The second number is 169
The sum is: 342

Requirements:

1. You must create an application named baseKaddition.
2. Your name and contestant number must appear as a comment at the top of the main source code file.
3. The program must read the name of the input file from the command line. If the file does not exist, then the program needs to display an appropriate message and exit. If the file name is not entered on the command line, then the program should display an appropriate message and exit.
4. The program will perform the addition correctly for however many numbers are in the input file.
5. The program must implement methods for output and the addition.
6. The program will display the output like the example above for all of the values in the input file.

Note to Graders: The contestants have been given a file named basekaddition.txt. You will run their program with a file named graderaddition.txt. This will produce different results than the file they were given. Thus you will be able to detect if they hardcoded the name of the file into their program. You must copy graderaddition.txt into the folder where their program runs from. Listed below are test cases and their results. The first line is what you type at the command prompt. The second line is the output produced by the program. The wording does not have to be exact.

When running the program, perform the following test cases:

Test Case #1:
baseKaddition
Please enter the name of the text file to use on the command line.

Test Case #2
baseKaddition grader.txt
The file grader.txt was not found.

Test Case #3
baseKaddition graderaddition.txt
The base of the numbers to add is 10
The first number is 173
The second number is 169
The sum is: 342

The base of the numbers to add is 8
The first number is 173
The second number is 147
The sum is: 342

The base of the numbers to add is 14
The first number is 2BC
The second number is 84D
The sum is: B2B

The base of the numbers to add is 2
The first number is 00101101
The second number is 11100101
The sum is: 100010010

The base of the numbers to add is 16
The first number is 000BBBB
The second number is 8888888
The sum is: 8894443

The base of the numbers to add is 3
The first number is 222222
The second number is 111111
The sum is: 1111110

The base of the numbers to add is 9
The first number is 804
The second number is 027
The sum is: 832

The base of the numbers to add is 7
The first number is 0
The second number is 0
The sum is: 0

The base of the numbers to add is 4
The first number is 123123
The second number is 000123
The sum is: 123312

The base of the numbers to add is 20
The first number is ABCDEF
The second number is 0GH0IJ
The sum is: AB8ECD

The base of the numbers to add is 15
The first number is 965DF
The second number is 01120
The sum is: 97710

Sample Code, student code should and will vary:

import java.io.FileNotFoundException;
import java.io.FileReader;
import java.util.Scanner;

/**
 * BPA Java Programming Contest Problem : Base K Addition
 *
 * @author contestant number goes here
 * @version 2014 September 10
 */

public class Add {
	public static void main(String[] args) throws FileNotFoundException {
		String sum = "";
// if the file was not put onto the command line prompt show an error message
		if (args.length > 0) {
			// try to open the file that was entered on the command prompt
			try {
				FileReader fr = new FileReader(args[0]);
				Scanner sc = new Scanner(fr);
				//get the number of times to do the summation
				int numberOfTimesToRun = sc.nextInt();
				for (int j = 0; j < numberOfTimesToRun; j++) {
					//get the base and two numbers
					int radix = sc.nextInt();
					String first = sc.next();
					String second = sc.next();
					
					//ensure the two numbers are the same length
					while (first.length() < second.length()) {
						first = "0" + first;
					}
					while (second.length() < first.length()) {
						second = "0" + second;
					}

					sum = sumNumbers(radix, first, second);

					showOutput(radix,first,second,sum);
					
				}
			//if the file can not be found, show an error message	
			} catch (FileNotFoundException ec) {
				System.out.println("The file " + args[0] + " was not found.");
			}
		} else {
			//Display an erro if there was not a file entered on the command line
			System.out.println("Please enter the name of the text file to use on the command line.");
		}

	}

	// This method will produce the output for all of the data pre-processing
	// It takes as input the base of the numbers, the first and second number, and the result
	// It does not return anything
	public static void showOutput(int radix, String first, String second, String sum)
	{
		System.out.println("The base of the numbers to add is " + radix);
		System.out.println("The first number is " + first);
		System.out.println("The second number is " + second);
		System.out.println("The sum is: " + sum + '\n');
	}
	
	// This method will perform the summation of the two numbers
	// It takes as input the base, and the two numbers
	// It returns the sum of the addition
	public static String sumNumbers(int radix, String first, String second)
	{
		String numerals = "0123456789ABCDEFHIJ";
		String sum="";
		int carry = 0;
		//loop for the length of the numbers
		for (int i=first.length()-1; i>=0; i--) {
			int a = numerals.indexOf(first.charAt(i));
			int b = numerals.indexOf(second.charAt(i));
			//add the characters together
			int c = a+b+carry;
			//adjust for greater than base
			if (c>=radix) {
				carry = 1;
				c -= radix;
			} else {
				carry = 0;
			}
			//sum up the numbers using the numbers and letters
			sum = numerals.charAt(c) + sum;
		}
		
if (carry == 1) {
			sum = "1" + sum;
		}
		return sum;	
	}
}
image1.wmf

